logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
//! A procedural macro attribute for instrumenting functions with [`tracing`].
//!
//! [`tracing`] is a framework for instrumenting Rust programs to collect
//! structured, event-based diagnostic information. This crate provides the
//! [`#[instrument]`][instrument] procedural macro attribute.
//!
//! Note that this macro is also re-exported by the main `tracing` crate.
//!
//! *Compiler support: [requires `rustc` 1.42+][msrv]*
//!
//! [msrv]: #supported-rust-versions
//!
//! ## Usage
//!
//! First, add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! tracing-attributes = "0.1.15"
//! ```
//!
//! The [`#[instrument]`][instrument] attribute can now be added to a function
//! to automatically create and enter `tracing` [span] when that function is
//! called. For example:
//!
//! ```
//! use tracing_attributes::instrument;
//!
//! #[instrument]
//! pub fn my_function(my_arg: usize) {
//!     // ...
//! }
//!
//! # fn main() {}
//! ```
//!
//! [`tracing`]: https://crates.io/crates/tracing
//! [span]: https://docs.rs/tracing/latest/tracing/span/index.html
//! [instrument]: attr.instrument.html
//!
//! ## Supported Rust Versions
//!
//! Tracing is built against the latest stable release. The minimum supported
//! version is 1.42. The current Tracing version is not guaranteed to build on
//! Rust versions earlier than the minimum supported version.
//!
//! Tracing follows the same compiler support policies as the rest of the Tokio
//! project. The current stable Rust compiler and the three most recent minor
//! versions before it will always be supported. For example, if the current
//! stable compiler version is 1.45, the minimum supported version will not be
//! increased past 1.42, three minor versions prior. Increasing the minimum
//! supported compiler version is not considered a semver breaking change as
//! long as doing so complies with this policy.
//!
#![doc(html_root_url = "https://docs.rs/tracing-attributes/0.1.15")]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/tokio-rs/tracing/master/assets/logo-type.png",
    issue_tracker_base_url = "https://github.com/tokio-rs/tracing/issues/"
)]
#![cfg_attr(docsrs, deny(broken_intra_doc_links))]
#![warn(
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    unreachable_pub,
    bad_style,
    const_err,
    dead_code,
    improper_ctypes,
    non_shorthand_field_patterns,
    no_mangle_generic_items,
    overflowing_literals,
    path_statements,
    patterns_in_fns_without_body,
    private_in_public,
    unconditional_recursion,
    unused_allocation,
    unused_comparisons,
    unused_parens,
    while_true
)]
// TODO: once `tracing` bumps its MSRV to 1.42, remove this allow.
#![allow(unused)]
extern crate proc_macro;

use std::collections::{HashMap, HashSet};
use std::iter;

use proc_macro2::TokenStream;
use quote::{quote, quote_spanned, ToTokens, TokenStreamExt as _};
use syn::ext::IdentExt as _;
use syn::parse::{Parse, ParseStream};
use syn::{
    punctuated::Punctuated, spanned::Spanned, Block, Expr, ExprAsync, ExprCall, FieldPat, FnArg,
    Ident, Item, ItemFn, LitInt, LitStr, Pat, PatIdent, PatReference, PatStruct, PatTuple,
    PatTupleStruct, PatType, Path, Signature, Stmt, Token, TypePath,
};
/// Instruments a function to create and enter a `tracing` [span] every time
/// the function is called.
///
/// By default, the generated span's [name] will be the name of the function,
/// the span's [target] will be the current module path, and the span's [level]
/// will be [`INFO`], although these properties can be overridden. Any arguments
/// to that function will be recorded as fields using [`fmt::Debug`].
///
/// # Overriding Span Attributes
///
/// To change the [name] of the generated span, add a `name` argument to the
/// `#[instrument]` macro, followed by an equals sign and a string literal. For
/// example:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // The generated span's name will be "my_span" rather than "my_function".
/// #[instrument(name = "my_span")]
/// pub fn my_function() {
///     // ... do something incredibly interesting and important ...
/// }
/// ```
///
/// To override the [target] of the generated span, add a `target` argument to
/// the `#[instrument]` macro, followed by an equals sign and a string literal
/// for the new target. The [module path] is still recorded separately. For
/// example:
///
/// ```
/// pub mod my_module {
///     # use tracing_attributes::instrument;
///     // The generated span's target will be "my_crate::some_special_target",
///     // rather than "my_crate::my_module".
///     #[instrument(target = "my_crate::some_special_target")]
///     pub fn my_function() {
///         // ... all kinds of neat code in here ...
///     }
/// }
/// ```
///
/// Finally, to override the [level] of the generated span, add a `level`
/// argument, followed by an equals sign and a string literal with the name of
/// the desired level. Level names are not case sensitive. For example:
///
/// ```
/// # use tracing_attributes::instrument;
/// // The span's level will be TRACE rather than INFO.
/// #[instrument(level = "trace")]
/// pub fn my_function() {
///     // ... I have written a truly marvelous implementation of this function,
///     // which this example is too narrow to contain ...
/// }
/// ```
///
/// # Skipping Fields
///
/// To skip recording one or more arguments to a function or method, pass
/// the argument's name inside the `skip()` argument on the `#[instrument]`
/// macro. This can be used when an argument to an instrumented function does
/// not implement [`fmt::Debug`], or to exclude an argument with a verbose or
/// costly `Debug` implementation. Note that:
///
/// - multiple argument names can be passed to `skip`.
/// - arguments passed to `skip` do _not_ need to implement `fmt::Debug`.
///
/// ## Examples
///
/// ```
/// # use tracing_attributes::instrument;
/// // This type doesn't implement `fmt::Debug`!
/// struct NonDebug;
///
/// // `arg` will be recorded, while `non_debug` will not.
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
///     // ...
/// }
/// ```
///
/// Skipping the `self` parameter:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[derive(Debug)]
/// struct MyType {
///    data: Vec<u8>, // Suppose this buffer is often quite long...
/// }
///
/// impl MyType {
///     // Suppose we don't want to print an entire kilobyte of `data`
///     // every time this is called...
///     #[instrument(skip(self))]
///     pub fn my_method(&mut self, an_interesting_argument: usize) {
///          // ... do something (hopefully, using all that `data`!)
///     }
/// }
/// ```
///
/// # Adding Fields
///
/// Additional fields (key-value pairs with arbitrary data) may be added to the
/// generated span using the `fields` argument on the `#[instrument]` macro. Any
/// Rust expression can be used as a field value in this manner. These
/// expressions will be evaluated at the beginning of the function's body, so
/// arguments to the function may be used in these expressions. Field names may
/// also be specified *without* values. Doing so will result in an [empty field]
/// whose value may be recorded later within the function body.
///
/// This supports the same [field syntax] as the `span!` and `event!` macros.
///
/// Note that overlap between the names of fields and (non-skipped) arguments
/// will result in a compile error.
///
/// ## Examples
///
/// Adding a new field based on the value of an argument:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This will record a field named "i" with the value of `i` *and* a field
/// // named "next" with the value of `i` + 1.
/// #[instrument(fields(next = i + 1))]
/// pub fn my_function(i: usize) {
///     // ...
/// }
/// ```
///
/// Recording specific properties of a struct as their own fields:
///
/// ```
/// # mod http {
/// #   pub struct Error;
/// #   pub struct Response<B> { pub(super) _b: std::marker::PhantomData<B> }
/// #   pub struct Request<B> { _b: B }
/// #   impl<B> std::fmt::Debug for Request<B> {
/// #       fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
/// #           f.pad("request")
/// #       }
/// #   }
/// #   impl<B> Request<B> {
/// #       pub fn uri(&self) -> &str { "fake" }
/// #       pub fn method(&self) -> &str { "GET" }
/// #   }
/// # }
/// # use tracing_attributes::instrument;
///
/// // This will record the request's URI and HTTP method as their own separate
/// // fields.
/// #[instrument(fields(http.uri = req.uri(), http.method = req.method()))]
/// pub fn handle_request<B>(req: http::Request<B>) -> http::Response<B> {
///     // ... handle the request ...
///     # http::Response { _b: std::marker::PhantomData }
/// }
/// ```
///
/// This can be used in conjunction with `skip` to record only some fields of a
/// struct:
/// ```
/// # use tracing_attributes::instrument;
/// // Remember the struct with the very large `data` field from the earlier
/// // example? Now it also has a `name`, which we might want to include in
/// // our span.
/// #[derive(Debug)]
/// struct MyType {
///    name: &'static str,
///    data: Vec<u8>,
/// }
///
/// impl MyType {
///     // This will skip the `data` field, but will include `self.name`,
///     // formatted using `fmt::Display`.
///     #[instrument(skip(self), fields(self.name = %self.name))]
///     pub fn my_method(&mut self, an_interesting_argument: usize) {
///          // ... do something (hopefully, using all that `data`!)
///     }
/// }
/// ```
///
/// Adding an empty field to be recorded later:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This function does a very interesting and important mathematical calculation.
/// // Suppose we want to record both the inputs to the calculation *and* its result...
/// #[instrument(fields(result))]
/// pub fn do_calculation(input_1: usize, input_2: usize) -> usize {
///     // Rerform the calculation.
///     let result = input_1 + input_2;
///
///     // Record the result as part of the current span.
///     tracing::Span::current().record("result", &result);
///
///     // Now, the result will also be included on this event!
///     tracing::info!("calculation complete!");
///
///     // ... etc ...
///     # 0
/// }
/// ```
///
/// # Examples
///
/// Instrumenting a function:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub fn my_function(my_arg: usize) {
///     // This event will be recorded inside a span named `my_function` with the
///     // field `my_arg`.
///     tracing::info!("inside my_function!");
///     // ...
/// }
/// ```
/// Setting the level for the generated span:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(level = "debug")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
/// Overriding the generated span's name:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(name = "my_name")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
/// Overriding the generated span's target:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(target = "my_target")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
///
/// To skip recording an argument, pass the argument's name to the `skip`:
///
/// ```
/// # use tracing_attributes::instrument;
/// struct NonDebug;
///
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
///     // ...
/// }
/// ```
///
/// To add an additional context to the span, pass key-value pairs to `fields`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(fields(foo="bar", id=1, show=true))]
/// fn my_function(arg: usize) {
///     // ...
/// }
/// ```
///
/// If the function returns a `Result<T, E>` and `E` implements `std::fmt::Display`, you can add
/// `err` to emit error events when the function returns `Err`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(err)]
/// fn my_function(arg: usize) -> Result<(), std::io::Error> {
///     Ok(())
/// }
/// ```
///
/// `async fn`s may also be instrumented:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub async fn my_function() -> Result<(), ()> {
///     // ...
///     # Ok(())
/// }
/// ```
///
/// It also works with [async-trait](https://crates.io/crates/async-trait)
/// (a crate that allows defining async functions in traits,
/// something not currently possible in Rust),
/// and hopefully most libraries that exhibit similar behaviors:
///
/// ```
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Foo {
///     async fn foo(&self, arg: usize);
/// }
///
/// #[derive(Debug)]
/// struct FooImpl(usize);
///
/// #[async_trait]
/// impl Foo for FooImpl {
///     #[instrument(fields(value = self.0, tmp = std::any::type_name::<Self>()))]
///     async fn foo(&self, arg: usize) {}
/// }
/// ```
///
/// Note than on `async-trait` <= 0.1.43, references to the `Self`
/// type inside the `fields` argument were only allowed when the instrumented
/// function is a method (i.e., the function receives `self` as an argument).
/// For example, this *used to not work* because the instrument function
/// didn't receive `self`:
/// ```
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Bar {
///     async fn bar();
/// }
///
/// #[derive(Debug)]
/// struct BarImpl(usize);
///
/// #[async_trait]
/// impl Bar for BarImpl {
///     #[instrument(fields(tmp = std::any::type_name::<Self>()))]
///     async fn bar() {}
/// }
/// ```
/// Instead, you should manually rewrite any `Self` types as the type for
/// which you implement the trait: `#[instrument(fields(tmp = std::any::type_name::<Bar>()))]`
/// (or maybe you can just bump `async-trait`).
///
/// [span]: https://docs.rs/tracing/latest/tracing/span/index.html
/// [name]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.name
/// [target]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.target
/// [level]: https://docs.rs/tracing/latest/tracing/struct.Level.html
/// [module path]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.module_path
/// [`INFO`]: https://docs.rs/tracing/latest/tracing/struct.Level.html#associatedconstant.INFO
/// [empty field]: https://docs.rs/tracing/latest/tracing/field/struct.Empty.html
/// [field syntax]: https://docs.rs/tracing/latest/tracing/#recording-fields
/// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
#[proc_macro_attribute]
pub fn instrument(
    args: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let input = syn::parse_macro_input!(item as ItemFn);
    let args = syn::parse_macro_input!(args as InstrumentArgs);

    let instrumented_function_name = input.sig.ident.to_string();

    // check for async_trait-like patterns in the block, and instrument
    // the future instead of the wrapper
    if let Some(internal_fun) = get_async_trait_info(&input.block, input.sig.asyncness.is_some()) {
        // let's rewrite some statements!
        let mut out_stmts: Vec<TokenStream> = input
            .block
            .stmts
            .iter()
            .map(|stmt| stmt.to_token_stream())
            .collect();

        if let Some((iter, _stmt)) = input
            .block
            .stmts
            .iter()
            .enumerate()
            .find(|(_iter, stmt)| *stmt == internal_fun.source_stmt)
        {
            // instrument the future by rewriting the corresponding statement
            out_stmts[iter] = match internal_fun.kind {
                // async-trait <= 0.1.43
                AsyncTraitKind::Function(fun) => gen_function(
                    fun,
                    args,
                    instrumented_function_name.as_str(),
                    internal_fun.self_type.as_ref(),
                ),
                // async-trait >= 0.1.44
                AsyncTraitKind::Async(async_expr) => {
                    let instrumented_block = gen_block(
                        &async_expr.block,
                        &input.sig.inputs,
                        true,
                        args,
                        instrumented_function_name.as_str(),
                        None,
                    );
                    let async_attrs = &async_expr.attrs;
                    quote! {
                        Box::pin(#(#async_attrs) * async move { #instrumented_block })
                    }
                }
            };
        }

        let vis = &input.vis;
        let sig = &input.sig;
        let attrs = &input.attrs;
        quote!(
            #(#attrs) *
            #vis #sig {
                #(#out_stmts) *
            }
        )
        .into()
    } else {
        gen_function(&input, args, instrumented_function_name.as_str(), None).into()
    }
}

/// Given an existing function, generate an instrumented version of that function
fn gen_function(
    input: &ItemFn,
    args: InstrumentArgs,
    instrumented_function_name: &str,
    self_type: Option<&syn::TypePath>,
) -> proc_macro2::TokenStream {
    // these are needed ahead of time, as ItemFn contains the function body _and_
    // isn't representable inside a quote!/quote_spanned! macro
    // (Syn's ToTokens isn't implemented for ItemFn)
    let ItemFn {
        attrs,
        vis,
        block,
        sig,
        ..
    } = input;

    let Signature {
        output: return_type,
        inputs: params,
        unsafety,
        asyncness,
        constness,
        abi,
        ident,
        generics:
            syn::Generics {
                params: gen_params,
                where_clause,
                ..
            },
        ..
    } = sig;

    let warnings = args.warnings();

    let body = gen_block(
        block,
        params,
        asyncness.is_some(),
        args,
        instrumented_function_name,
        self_type,
    );

    quote!(
        #(#attrs) *
        #vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #return_type
        #where_clause
        {
            #warnings
            #body
        }
    )
}

/// Instrument a block
fn gen_block(
    block: &Block,
    params: &Punctuated<FnArg, Token![,]>,
    async_context: bool,
    mut args: InstrumentArgs,
    instrumented_function_name: &str,
    self_type: Option<&syn::TypePath>,
) -> proc_macro2::TokenStream {
    let err = args.err;

    // generate the span's name
    let span_name = args
        // did the user override the span's name?
        .name
        .as_ref()
        .map(|name| quote!(#name))
        .unwrap_or_else(|| quote!(#instrumented_function_name));

    // generate this inside a closure, so we can return early on errors.
    let span = (|| {
        // Pull out the arguments-to-be-skipped first, so we can filter results
        // below.
        let param_names: Vec<(Ident, Ident)> = params
            .clone()
            .into_iter()
            .flat_map(|param| match param {
                FnArg::Typed(PatType { pat, .. }) => param_names(*pat),
                FnArg::Receiver(_) => Box::new(iter::once(Ident::new("self", param.span()))),
            })
            // Little dance with new (user-exposed) names and old (internal)
            // names of identifiers. That way, we could do the following
            // even though async_trait (<=0.1.43) rewrites "self" as "_self":
            // ```
            // #[async_trait]
            // impl Foo for FooImpl {
            //     #[instrument(skip(self))]
            //     async fn foo(&self, v: usize) {}
            // }
            // ```
            .map(|x| {
                // if we are inside a function generated by async-trait <=0.1.43, we need to
                // take care to rewrite "_self" as "self" for 'user convenience'
                if self_type.is_some() && x == "_self" {
                    (Ident::new("self", x.span()), x)
                } else {
                    (x.clone(), x)
                }
            })
            .collect();

        for skip in &args.skips {
            if !param_names.iter().map(|(user, _)| user).any(|y| y == skip) {
                return quote_spanned! {skip.span()=>
                    compile_error!("attempting to skip non-existent parameter")
                };
            }
        }

        let level = args.level();
        let target = args.target();

        // filter out skipped fields
        let quoted_fields: Vec<_> = param_names
            .iter()
            .filter(|(param, _)| {
                if args.skips.contains(param) {
                    return false;
                }

                // If any parameters have the same name as a custom field, skip
                // and allow them to be formatted by the custom field.
                if let Some(ref fields) = args.fields {
                    fields.0.iter().all(|Field { ref name, .. }| {
                        let first = name.first();
                        first != name.last() || !first.iter().any(|name| name == &param)
                    })
                } else {
                    true
                }
            })
            .map(|(user_name, real_name)| quote!(#user_name = tracing::field::debug(&#real_name)))
            .collect();

        // replace every use of a variable with its original name
        if let Some(Fields(ref mut fields)) = args.fields {
            let mut replacer = IdentAndTypesRenamer {
                idents: param_names,
                types: Vec::new(),
            };

            // when async-trait <=0.1.43 is in use, replace instances
            // of the "Self" type inside the fields values
            if let Some(self_type) = self_type {
                replacer.types.push(("Self", self_type.clone()));
            }

            for e in fields.iter_mut().filter_map(|f| f.value.as_mut()) {
                syn::visit_mut::visit_expr_mut(&mut replacer, e);
            }
        }

        let custom_fields = &args.fields;

        quote!(tracing::span!(
            target: #target,
            #level,
            #span_name,
            #(#quoted_fields,)*
            #custom_fields

        ))
    })();

    // Generate the instrumented function body.
    // If the function is an `async fn`, this will wrap it in an async block,
    // which is `instrument`ed using `tracing-futures`. Otherwise, this will
    // enter the span and then perform the rest of the body.
    // If `err` is in args, instrument any resulting `Err`s.
    if async_context {
        if err {
            quote_spanned!(block.span()=>
                let __tracing_attr_span = #span;
                tracing::Instrument::instrument(async move {
                    match async move { #block }.await {
                        #[allow(clippy::unit_arg)]
                        Ok(x) => Ok(x),
                        Err(e) => {
                            tracing::error!(error = %e);
                            Err(e)
                        }
                    }
                }, __tracing_attr_span).await
            )
        } else {
            quote_spanned!(block.span()=>
                let __tracing_attr_span = #span;
                    tracing::Instrument::instrument(
                        async move { #block },
                        __tracing_attr_span
                    )
                    .await
            )
        }
    } else if err {
        quote_spanned!(block.span()=>
            let __tracing_attr_span = #span;
            let __tracing_attr_guard = __tracing_attr_span.enter();
            #[allow(clippy::redundant_closure_call)]
            match (move || #block)() {
                #[allow(clippy::unit_arg)]
                Ok(x) => Ok(x),
                Err(e) => {
                    tracing::error!(error = %e);
                    Err(e)
                }
            }
        )
    } else {
        quote_spanned!(block.span()=>
            let __tracing_attr_span = #span;
            let __tracing_attr_guard = __tracing_attr_span.enter();
            #block
        )
    }
}

#[derive(Default, Debug)]
struct InstrumentArgs {
    level: Option<Level>,
    name: Option<LitStr>,
    target: Option<LitStr>,
    skips: HashSet<Ident>,
    fields: Option<Fields>,
    err: bool,
    /// Errors describing any unrecognized parse inputs that we skipped.
    parse_warnings: Vec<syn::Error>,
}

impl InstrumentArgs {
    fn level(&self) -> impl ToTokens {
        fn is_level(lit: &LitInt, expected: u64) -> bool {
            match lit.base10_parse::<u64>() {
                Ok(value) => value == expected,
                Err(_) => false,
            }
        }

        match &self.level {
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("trace") => {
                quote!(tracing::Level::TRACE)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("debug") => {
                quote!(tracing::Level::DEBUG)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("info") => {
                quote!(tracing::Level::INFO)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("warn") => {
                quote!(tracing::Level::WARN)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("error") => {
                quote!(tracing::Level::ERROR)
            }
            Some(Level::Int(ref lit)) if is_level(lit, 1) => quote!(tracing::Level::TRACE),
            Some(Level::Int(ref lit)) if is_level(lit, 2) => quote!(tracing::Level::DEBUG),
            Some(Level::Int(ref lit)) if is_level(lit, 3) => quote!(tracing::Level::INFO),
            Some(Level::Int(ref lit)) if is_level(lit, 4) => quote!(tracing::Level::WARN),
            Some(Level::Int(ref lit)) if is_level(lit, 5) => quote!(tracing::Level::ERROR),
            Some(Level::Path(ref pat)) => quote!(#pat),
            Some(lit) => quote! {
                compile_error!(
                    "unknown verbosity level, expected one of \"trace\", \
                     \"debug\", \"info\", \"warn\", or \"error\", or a number 1-5"
                )
            },
            None => quote!(tracing::Level::INFO),
        }
    }

    fn target(&self) -> impl ToTokens {
        if let Some(ref target) = self.target {
            quote!(#target)
        } else {
            quote!(module_path!())
        }
    }

    /// Generate "deprecation" warnings for any unrecognized attribute inputs
    /// that we skipped.
    ///
    /// For backwards compatibility, we need to emit compiler warnings rather
    /// than errors for unrecognized inputs. Generating a fake deprecation is
    /// the only way to do this on stable Rust right now.
    fn warnings(&self) -> impl ToTokens {
        let warnings = self.parse_warnings.iter().map(|err| {
            let msg = format!("found unrecognized input, {}", err);
            let msg = LitStr::new(&msg, err.span());
            // TODO(eliza): This is a bit of a hack, but it's just about the
            // only way to emit warnings from a proc macro on stable Rust.
            // Eventually, when the `proc_macro::Diagnostic` API stabilizes, we
            // should definitely use that instead.
            quote_spanned! {err.span()=>
                #[warn(deprecated)]
                {
                    #[deprecated(since = "not actually deprecated", note = #msg)]
                    const TRACING_INSTRUMENT_WARNING: () = ();
                    let _ = TRACING_INSTRUMENT_WARNING;
                }
            }
        });
        quote! {
            { #(#warnings)* }
        }
    }
}

impl Parse for InstrumentArgs {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let mut args = Self::default();
        while !input.is_empty() {
            let lookahead = input.lookahead1();
            if lookahead.peek(kw::name) {
                if args.name.is_some() {
                    return Err(input.error("expected only a single `name` argument"));
                }
                let name = input.parse::<StrArg<kw::name>>()?.value;
                args.name = Some(name);
            } else if lookahead.peek(LitStr) {
                // XXX: apparently we support names as either named args with an
                // sign, _or_ as unnamed string literals. That's weird, but
                // changing it is apparently breaking.
                if args.name.is_some() {
                    return Err(input.error("expected only a single `name` argument"));
                }
                args.name = Some(input.parse()?);
            } else if lookahead.peek(kw::target) {
                if args.target.is_some() {
                    return Err(input.error("expected only a single `target` argument"));
                }
                let target = input.parse::<StrArg<kw::target>>()?.value;
                args.target = Some(target);
            } else if lookahead.peek(kw::level) {
                if args.level.is_some() {
                    return Err(input.error("expected only a single `level` argument"));
                }
                args.level = Some(input.parse()?);
            } else if lookahead.peek(kw::skip) {
                if !args.skips.is_empty() {
                    return Err(input.error("expected only a single `skip` argument"));
                }
                let Skips(skips) = input.parse()?;
                args.skips = skips;
            } else if lookahead.peek(kw::fields) {
                if args.fields.is_some() {
                    return Err(input.error("expected only a single `fields` argument"));
                }
                args.fields = Some(input.parse()?);
            } else if lookahead.peek(kw::err) {
                let _ = input.parse::<kw::err>()?;
                args.err = true;
            } else if lookahead.peek(Token![,]) {
                let _ = input.parse::<Token![,]>()?;
            } else {
                // We found a token that we didn't expect!
                // We want to emit warnings for these, rather than errors, so
                // we'll add it to the list of unrecognized inputs we've seen so
                // far and keep going.
                args.parse_warnings.push(lookahead.error());
                // Parse the unrecognized token tree to advance the parse
                // stream, and throw it away so we can keep parsing.
                let _ = input.parse::<proc_macro2::TokenTree>();
            }
        }
        Ok(args)
    }
}

struct StrArg<T> {
    value: LitStr,
    _p: std::marker::PhantomData<T>,
}

impl<T: Parse> Parse for StrArg<T> {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<T>()?;
        let _ = input.parse::<Token![=]>()?;
        let value = input.parse()?;
        Ok(Self {
            value,
            _p: std::marker::PhantomData,
        })
    }
}

struct Skips(HashSet<Ident>);

impl Parse for Skips {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::skip>();
        let content;
        let _ = syn::parenthesized!(content in input);
        let names: Punctuated<Ident, Token![,]> = content.parse_terminated(Ident::parse_any)?;
        let mut skips = HashSet::new();
        for name in names {
            if skips.contains(&name) {
                return Err(syn::Error::new(
                    name.span(),
                    "tried to skip the same field twice",
                ));
            } else {
                skips.insert(name);
            }
        }
        Ok(Self(skips))
    }
}

#[derive(Debug)]
struct Fields(Punctuated<Field, Token![,]>);

#[derive(Debug)]
struct Field {
    name: Punctuated<Ident, Token![.]>,
    value: Option<Expr>,
    kind: FieldKind,
}

#[derive(Debug, Eq, PartialEq)]
enum FieldKind {
    Debug,
    Display,
    Value,
}

impl Parse for Fields {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::fields>();
        let content;
        let _ = syn::parenthesized!(content in input);
        let fields: Punctuated<_, Token![,]> = content.parse_terminated(Field::parse)?;
        Ok(Self(fields))
    }
}

impl ToTokens for Fields {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        self.0.to_tokens(tokens)
    }
}

impl Parse for Field {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let mut kind = FieldKind::Value;
        if input.peek(Token![%]) {
            input.parse::<Token![%]>()?;
            kind = FieldKind::Display;
        } else if input.peek(Token![?]) {
            input.parse::<Token![?]>()?;
            kind = FieldKind::Debug;
        };
        let name = Punctuated::parse_separated_nonempty_with(input, Ident::parse_any)?;
        let value = if input.peek(Token![=]) {
            input.parse::<Token![=]>()?;
            if input.peek(Token![%]) {
                input.parse::<Token![%]>()?;
                kind = FieldKind::Display;
            } else if input.peek(Token![?]) {
                input.parse::<Token![?]>()?;
                kind = FieldKind::Debug;
            };
            Some(input.parse()?)
        } else {
            None
        };
        Ok(Self { name, kind, value })
    }
}

impl ToTokens for Field {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        if let Some(ref value) = self.value {
            let name = &self.name;
            let kind = &self.kind;
            tokens.extend(quote! {
                #name = #kind#value
            })
        } else if self.kind == FieldKind::Value {
            // XXX(eliza): I don't like that fields without values produce
            // empty fields rather than local variable shorthand...but,
            // we've released a version where field names without values in
            // `instrument` produce empty field values, so changing it now
            // is a breaking change. agh.
            let name = &self.name;
            tokens.extend(quote!(#name = tracing::field::Empty))
        } else {
            self.kind.to_tokens(tokens);
            self.name.to_tokens(tokens);
        }
    }
}

impl ToTokens for FieldKind {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        match self {
            FieldKind::Debug => tokens.extend(quote! { ? }),
            FieldKind::Display => tokens.extend(quote! { % }),
            _ => {}
        }
    }
}

#[derive(Debug)]
enum Level {
    Str(LitStr),
    Int(LitInt),
    Path(Path),
}

impl Parse for Level {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::level>()?;
        let _ = input.parse::<Token![=]>()?;
        let lookahead = input.lookahead1();
        if lookahead.peek(LitStr) {
            Ok(Self::Str(input.parse()?))
        } else if lookahead.peek(LitInt) {
            Ok(Self::Int(input.parse()?))
        } else if lookahead.peek(Ident) {
            Ok(Self::Path(input.parse()?))
        } else {
            Err(lookahead.error())
        }
    }
}

fn param_names(pat: Pat) -> Box<dyn Iterator<Item = Ident>> {
    match pat {
        Pat::Ident(PatIdent { ident, .. }) => Box::new(iter::once(ident)),
        Pat::Reference(PatReference { pat, .. }) => param_names(*pat),
        Pat::Struct(PatStruct { fields, .. }) => Box::new(
            fields
                .into_iter()
                .flat_map(|FieldPat { pat, .. }| param_names(*pat)),
        ),
        Pat::Tuple(PatTuple { elems, .. }) => Box::new(elems.into_iter().flat_map(param_names)),
        Pat::TupleStruct(PatTupleStruct {
            pat: PatTuple { elems, .. },
            ..
        }) => Box::new(elems.into_iter().flat_map(param_names)),

        // The above *should* cover all cases of irrefutable patterns,
        // but we purposefully don't do any funny business here
        // (such as panicking) because that would obscure rustc's
        // much more informative error message.
        _ => Box::new(iter::empty()),
    }
}

mod kw {
    syn::custom_keyword!(fields);
    syn::custom_keyword!(skip);
    syn::custom_keyword!(level);
    syn::custom_keyword!(target);
    syn::custom_keyword!(name);
    syn::custom_keyword!(err);
}

enum AsyncTraitKind<'a> {
    // old construction. Contains the function
    Function(&'a ItemFn),
    // new construction. Contains a reference to the async block
    Async(&'a ExprAsync),
}

struct AsyncTraitInfo<'a> {
    // statement that must be patched
    source_stmt: &'a Stmt,
    kind: AsyncTraitKind<'a>,
    self_type: Option<syn::TypePath>,
}

// Get the AST of the inner function we need to hook, if it was generated
// by async-trait.
// When we are given a function annotated by async-trait, that function
// is only a placeholder that returns a pinned future containing the
// user logic, and it is that pinned future that needs to be instrumented.
// Were we to instrument its parent, we would only collect information
// regarding the allocation of that future, and not its own span of execution.
// Depending on the version of async-trait, we inspect the block of the function
// to find if it matches the pattern
// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))` (<=0.1.43), or if
// it matches `Box::pin(async move { ... }) (>=0.1.44). We the return the
// statement that must be instrumented, along with some other informations.
// 'gen_body' will then be able to use that information to instrument the
// proper function/future.
// (this follows the approach suggested in
// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
fn get_async_trait_info(block: &Block, block_is_async: bool) -> Option<AsyncTraitInfo<'_>> {
    // are we in an async context? If yes, this isn't a async_trait-like pattern
    if block_is_async {
        return None;
    }

    // list of async functions declared inside the block
    let inside_funs = block.stmts.iter().filter_map(|stmt| {
        if let Stmt::Item(Item::Fn(fun)) = &stmt {
            // If the function is async, this is a candidate
            if fun.sig.asyncness.is_some() {
                return Some((stmt, fun));
            }
        }
        None
    });

    // last expression of the block (it determines the return value
    // of the block, so that if we are working on a function whose
    // `trait` or `impl` declaration is annotated by async_trait,
    // this is quite likely the point where the future is pinned)
    let (last_expr_stmt, last_expr) = block.stmts.iter().rev().find_map(|stmt| {
        if let Stmt::Expr(expr) = stmt {
            Some((stmt, expr))
        } else {
            None
        }
    })?;

    // is the last expression a function call?
    let (outside_func, outside_args) = match last_expr {
        Expr::Call(ExprCall { func, args, .. }) => (func, args),
        _ => return None,
    };

    // is it a call to `Box::pin()`?
    let path = match outside_func.as_ref() {
        Expr::Path(path) => &path.path,
        _ => return None,
    };
    if !path_to_string(path).ends_with("Box::pin") {
        return None;
    }

    // Does the call take an argument? If it doesn't,
    // it's not gonna compile anyway, but that's no reason
    // to (try to) perform an out of bounds access
    if outside_args.is_empty() {
        return None;
    }

    // Is the argument to Box::pin an async block that
    // captures its arguments?
    if let Expr::Async(async_expr) = &outside_args[0] {
        // check that the move 'keyword' is present
        async_expr.capture?;

        return Some(AsyncTraitInfo {
            source_stmt: last_expr_stmt,
            kind: AsyncTraitKind::Async(async_expr),
            self_type: None,
        });
    }

    // Is the argument to Box::pin a function call itself?
    let func = match &outside_args[0] {
        Expr::Call(ExprCall { func, .. }) => func,
        _ => return None,
    };

    // "stringify" the path of the function called
    let func_name = match **func {
        Expr::Path(ref func_path) => path_to_string(&func_path.path),
        _ => return None,
    };

    // Was that function defined inside of the current block?
    // If so, retrieve the statement where it was declared and the function itself
    let (stmt_func_declaration, func) = inside_funs
        .into_iter()
        .find(|(_, fun)| fun.sig.ident == func_name)?;

    // If "_self" is present as an argument, we store its type to be able to rewrite "Self" (the
    // parameter type) with the type of "_self"
    let mut self_type = None;
    for arg in &func.sig.inputs {
        if let FnArg::Typed(ty) = arg {
            if let Pat::Ident(PatIdent { ref ident, .. }) = *ty.pat {
                if ident == "_self" {
                    let mut ty = *ty.ty.clone();
                    // extract the inner type if the argument is "&self" or "&mut self"
                    if let syn::Type::Reference(syn::TypeReference { elem, .. }) = ty {
                        ty = *elem;
                    }

                    if let syn::Type::Path(tp) = ty {
                        self_type = Some(tp);
                        break;
                    }
                }
            }
        }
    }

    Some(AsyncTraitInfo {
        source_stmt: stmt_func_declaration,
        kind: AsyncTraitKind::Function(func),
        self_type,
    })
}

// Return a path as a String
fn path_to_string(path: &Path) -> String {
    use std::fmt::Write;
    // some heuristic to prevent too many allocations
    let mut res = String::with_capacity(path.segments.len() * 5);
    for i in 0..path.segments.len() {
        write!(&mut res, "{}", path.segments[i].ident)
            .expect("writing to a String should never fail");
        if i < path.segments.len() - 1 {
            res.push_str("::");
        }
    }
    res
}

/// A visitor struct to replace idents and types in some piece
/// of code (e.g. the "self" and "Self" tokens in user-supplied
/// fields expressions when the function is generated by an old
/// version of async-trait).
struct IdentAndTypesRenamer<'a> {
    types: Vec<(&'a str, TypePath)>,
    idents: Vec<(Ident, Ident)>,
}

impl<'a> syn::visit_mut::VisitMut for IdentAndTypesRenamer<'a> {
    // we deliberately compare strings because we want to ignore the spans
    // If we apply clippy's lint, the behavior changes
    #[allow(clippy::cmp_owned)]
    fn visit_ident_mut(&mut self, id: &mut Ident) {
        for (old_ident, new_ident) in &self.idents {
            if id.to_string() == old_ident.to_string() {
                *id = new_ident.clone();
            }
        }
    }

    fn visit_type_mut(&mut self, ty: &mut syn::Type) {
        for (type_name, new_type) in &self.types {
            if let syn::Type::Path(TypePath { path, .. }) = ty {
                if path_to_string(path) == *type_name {
                    *ty = syn::Type::Path(new_type.clone());
                }
            }
        }
    }
}

// A visitor struct that replace an async block by its patched version
struct AsyncTraitBlockReplacer<'a> {
    block: &'a Block,
    patched_block: Block,
}

impl<'a> syn::visit_mut::VisitMut for AsyncTraitBlockReplacer<'a> {
    fn visit_block_mut(&mut self, i: &mut Block) {
        if i == self.block {
            *i = self.patched_block.clone();
        }
    }
}